## Carbon Footprint of New Zealand Logging Operations



Simon Smith, Dougal Shepherd & Prof. Rien Visser NZ School of Forestry, University of Canterbury, November 2021

COFE 2023, Flagstaff, AZ, USA

## Carbon Footprint of NZ Logging...

- NZ Harvesting Systems & Mechanisation
- Fuel Use of Harvesting Systems
- Why Carbon Footprint
- Study Design & CO<sub>2</sub>e Results
- Reducing our Carbon Footprint





#### NZ Benchmarking Cost and Productivity (2008 → 2023)

#### **NZ Surveys** = 420+ ground-based and 310+ yarder logging crews

#### **Productivity**:

Ground-Based – increased from 30 to 36 t/hr Yarder – increased from 23 to 35 t/hr !!

#### Logging Rate:

Ground-Based – increased from 15 to US\$21/t Yarder – increased from 21 to 28 US\$/t

#### **Crew size:**

Ground-based almost 90% mech - 5.4 machine to 6 people

Yarder – from 4 to 7 machine on average!

#### Stand details:

Ave tree size down from 2.2 to 1.9  $m^3$ Ave stand up from 510 to 605  $m^3$ /ha.





#### **Mechanised Ground-Based Operation**



Interpine – "Harvest Audit video"

### NZ: Winch-Assist

- □ 220+ working full-time, 470+ made in NZ
- Mainly used for felling pre-bunching

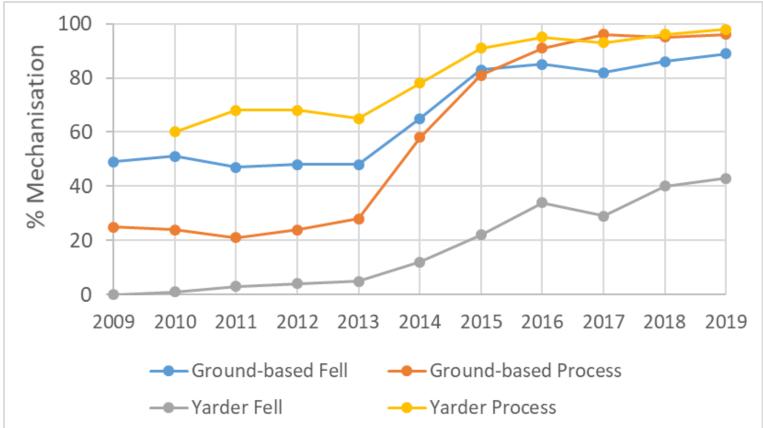




Now also skidder and forwarder...






## Levels of Mechanisation

97% of all processing mechanised

- from < 20% 12 years ago



65% of all yarder operations have access to winch-assist



### Why study Carbon Footprint of Logging Systems?

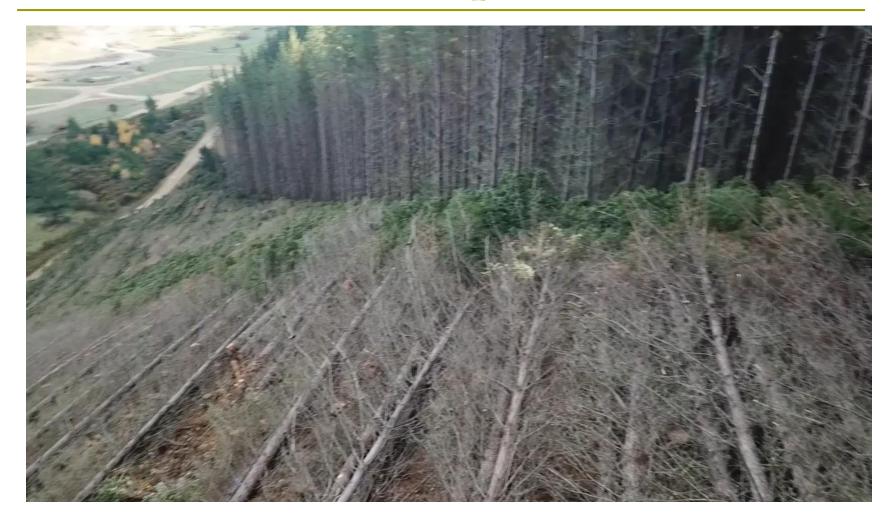
- Plantation forestry is very Carbon positive (i.e. we sequester a lot of Carbon)
- 2. But, highly mechanized harvest system have high energy requirements (i.e. use a lot of fuel!)
- Harvest operations contribute 45%-60% of emissions for production of a domestic log



### Carbon Footprint of Logging Systems – study goals

- 1. Develop a pragmatic method to measure and report their carbon footprint equivalent ( $CO_2e$ ).
- Establish CO<sub>2</sub>e for harvesting crews in NZ (ground-based, swing yarder, tower yarder).
- 3. Investigate and present current and future methods to mitigate GHG emissions for harvest crews.

### Method – Contractor & Company Survey


Harvest systems in study – contractor asked to report fuel use and production:

- 30 ground-based crews (average 4.8 Machines)
- 12 tower yarder (average 7.4 Machines)
- 13 swing yarder (average 8.1 Machines)

Also asked for reasons to report and ideas for reducing fuel.



## **Mechanised Yarder Operations**



## Method – develop protocol

□ Set scope = 1, 'direct GHG emissions and removals'.

approx. 90% is diesel used, further 7% for oils

Total footprint is...

- Diesel = Diesel use (I) x diesel factor (of 2.69 kgCO<sub>2</sub>e/I) =
- <u>+Oil</u> = Diesel use (I) x 7% x oil factor (of 2.96 kgCO<sub>2</sub>e/I)

+ petrol if any...

= Total Estimated Carbon Footprint (tCO2e/year)

divided by annual production

= Carbon per unit (kgCO<sub>2</sub>e / m3)

Note: Well to tank? = Diesel use x factor 0.63

### Results

Fuel use (l/m3) is going up fast!

2000 – 2.5 l/m<sup>3</sup> approx.

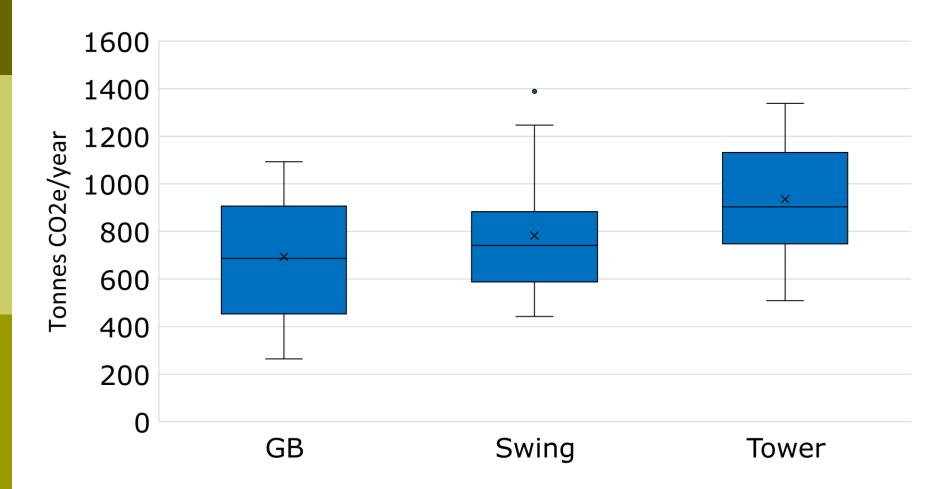


2016 – 3.0 l/m<sup>3</sup> for GB and 3.2 l/m<sup>3</sup> for yarder

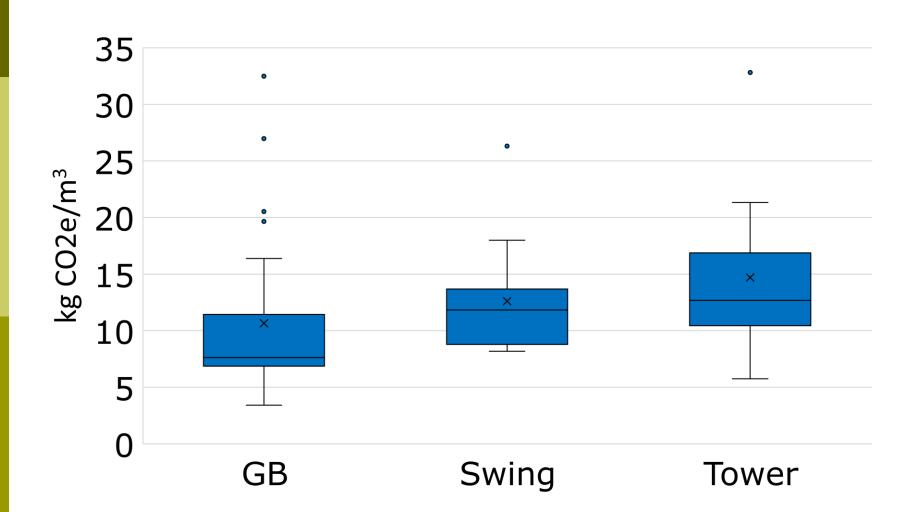
(Paul Oyier and Visser 2017)

2022 - 3.7 l/m<sup>3</sup> for GB and 4.7 l/m<sup>3</sup> for yarder

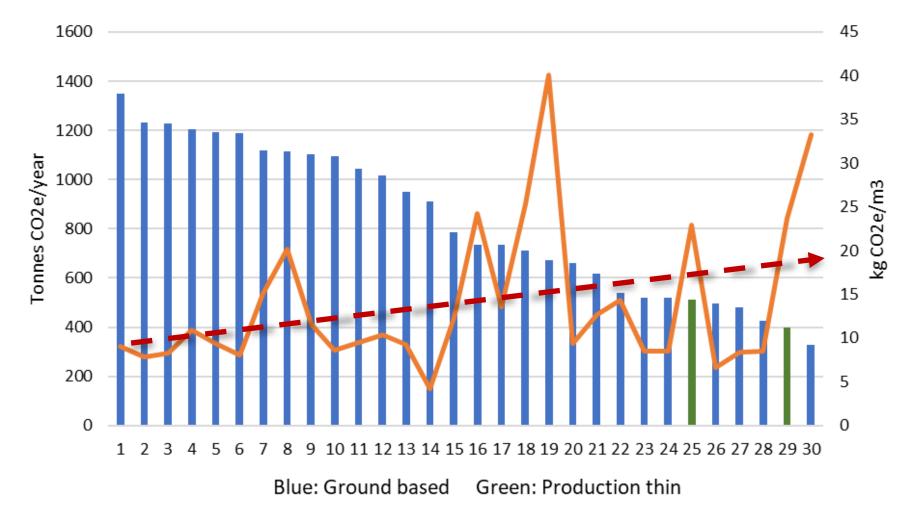
In Europe – modern yarder systems @ 1.6 – 1.8 l/m<sup>3</sup>


### Results

Average NZ logging crew produces approx. 70,000 m3 and uses 260,000 litres of diesel per year!




|                          | Mean t<br>CO <sub>2</sub> e/annum | Mean<br>(Kg CO <sub>2</sub> e/m <sup>3</sup> ) |
|--------------------------|-----------------------------------|------------------------------------------------|
| Ground Based<br>(n = 30) | 690                               | 10.7                                           |
| Swing Yarder<br>(n = 13) | 780                               | 12.6                                           |
| Tower Yarder<br>(n = 12) | 940                               | 14.7                                           |


#### t $CO_2e$ /year by crew



#### kg $CO_2 e/m^3$ by crew



# Ground-based – Link between total and per $m^3 CO_2 e$ ?



#### Yarder – Link between total and per m<sup>3</sup> $CO_2e$ ?



## Opportunities to reduce fuel use?

#### Near Term:

- Opportunity for biomass → fuel studied but currently not realistic in NZ
- Bio-fuels → High life cycle cost high global feedstock demand & transport first
- Bio-oils / lubricants: suited to forestry applications low uptake as expensive per L cost?
  6% less cost than traditional oils (M & R Visser, 2016)
- Simplification of harvest system design?

#### Longer Term

- Integration of more electric-hybrid machines (i.e. Logset 12H GTE 7-30% fuel reduction
- Several companies investing in Hydrogen infrastructure
- Pilot and design phase hydrogen and electric forestry specific machinery underway









### Where are we at?

#### Pros

- Good 'social licence' ethical desire to improve & contribute to society goals
- Better financing opportunities
- Help focus on reducing costs
- Some larger forestry companies report their carbon footprint, include harvesting based on fuel estimates

#### Cons

- No pressure on harvest crews to report "brings unnecessary attention?"
- Time taken, cost of reporting
- Easy to 'adjust' fuel use values drive to be lowest / best





## Summary

- Methodology developed for simplified carbon footprint of Logging Operations
- Averages established of 10.7 (Ground Based), 12.6 (Swing Yarder), 14.7 (Tower Yarder) kg CO<sub>2</sub>e per m<sup>3</sup> harvested
- High level of variation suggests logging crews need to review fuel use
- Reducing footprint?; short term biofuels and oils, long term electric and hydrogen

